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1. Introduction

A risk-based approach for supervision and regulation of

the financial sector is gaining ground in both emerging

and industrialized countries. As part of this approach,

regulators need to measure, monitor, and mitigate market

risk. Value at Risk (VaR) is one measure being explored

for this purpose. One of the most important sectors in

which this practice has been adopted is the pension fund

industry.x As the recent financial crisis has shown, risks

are generally difficult to measure and mitigate. This

becomes crucial in the case of pensions, where people rely

on their savings to finance their old age.
As longevity increases, defined benefit pension systems

may no longer be sustainable, and defined contribution

systems are more likely to be considered. In defined

benefit schemes, retirement income is a function of labor

income during the last years before retirement, and the

investment and longevity risks are taken by the sponsor

of the plan (namely, the company or government).

In defined contribution schemes, the retiree’s pension

depends on the amount accumulated during the working

life, so the investment and longevity risks are taken by the

individual.
Measuring risk adequately is important for individuals,

because their portfolio decisions have an impact on their

future pensions. This is particularly important for

countries that have adopted a mandatory defined contri-

bution pension system, as is the case in most of Latin

America and Eastern Europe.� Most of these countries
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have adopted stringent quantitative restrictions which, in
practice, imply a very narrow set of instruments in which
pensions funds can invest. However, there is increasing
interest in adopting risk measures to complement or
substitute the quantitative restrictions.

This paper discusses some of the effects of imposing
VaR limits and quantitative restrictions on portfolio
choices. The paper relates results on conventional port-
folio optimization and VaR portfolio optimization with
the imposition of regulatory constraints (such as volatility
constraints, VaR limits, or quantitative constraints). It
also provides guidelines with respect to the conditions
under which VaR limits are preferable to quantitative
limits. Finally, it also discusses some empirical issues that
regulators should consider prior to imposing VaR limits
or adopting a risk-based supervision framework for the
case of defined contribution pension systems.

The paper is organized as follows. Section 2 describes
the main rationale for imposing regulations based on VaR
limits or quantitative restrictions for pension funds in
defined contribution systems. Section 3 presents some
equivalences between VaR limits and conventional risk
measures and the conditions required to meet them.
Section 4 uses the equivalences of the previous section to
analyse the effects of imposing VaR limits and discusses
specific aspects that should be considered prior to
imposing a VaR-based supervision. Finally, section 5
presents some concluding remarks.

2. VaR-based limits for pension funds

Asset allocations for pension funds in a defined contri-
bution system might vary depending on the importance of
this income for future retirees and on whether the
contribution is voluntary or compulsory. If retirement
income strongly depends on pension fund assets, risk
tolerance may be lower than if there are other sources of
income. Risk tolerance may also be lower if the system is
mandatory rather than voluntary. This is particularly true
in countries where there are explicit guarantees or where
implicit guarantees might be claimed.

Under mandatory defined contribution pension sys-
tems, the risks of investment and longevity are assumed
by affiliates, whose pensions depend on the returns
obtained by their portfolio over their lifetime. Since
they invest for the long term, short-term volatility does
not necessarily have an impact on pensions, unless the
worker is close to retirement. Risk tolerance may thus
change over the life cycle, and pension funds should
consider this when taking portfolio decisions.

Additionally, at the time of retirement, the worker faces
interest rate and longevity risks, as the assets that were
accumulated need to be transformed into an annuity
(pension income). The value of that annuity depends on
the interest rate and life expectancy tables at the moment

of retirement. Therefore, the asset allocation must also
consider these risks. All these considerations might be
taken into account when choosing the portfolio and
defining the risk tolerance of pension funds.

Regulations for the portfolio allocation of pension
funds in mandatory defined contribution systems are
often motivated by a potential principal-agent problem.
The regulator may consider that pension fund adminis-
trators (the agent) may be inclined to take riskier
positions than what the affiliates (the principal) would
prefer in order to attract clients by showing higher
expected returns (and implicitly exposing the principal to
higher risk).y

Even with no principal–agent problems, investment
strategies may be regulated because of the existence of
moral hazard. For example, several governments provide
minimum pension guarantees, which may induce both the
principal and the agent to take riskier positions than they
would in the absence of the guarantees. Thus, the
optimality and welfare considerations of a given regulation
depend on the extent of the difference between the agent’s
and the principal’s preferences and on the regulator’s
ability to approximate the preferences of the latter. Prior to
imposing limits or similar regulations, the regulator should
be clear about the source of the problem and the
preferences and technologies of the agents involved.

To address these potential problems, regulators tend to
impose restrictions on the investment strategies of pension
funds in mandatory defined contribution systems. The
most frequent restriction is the imposition of quantitative
limits that put a ceiling on investments in variable-income
instruments and/or investments abroad. As discussed
above, regulators have also adopted or are considering
VaR limits.

Are quantitative and VaR limits related? Is one prefer-
able to the other? Under what conditions? How likely are
they to bemet in practice?What should regulators consider
prior to imposing limits? The following sections provide
guidelines for answering these questions.

3. Supporting theory: Some equivalences

This section presents a simple theoretical framework that
relates conventional portfolio optimization with VaR and
quantitative limits and derives the conditions under which
they may be equivalent. These strategies share the
property of choosing portfolios that combine returns
and volatility such that the investor’s objective function is
maximized. For instance, the mean–variance frontier
approach implies that the portfolio is chosen to minimize
volatility subject to the constraint of obtaining a certain
expected return.z This strategy is equivalent to one that
assumes quadratic preferences and therefore maximizes a
utility function that is increasing in expected return and
decreasing in volatility. Finally, under certain

yDifferences in the incentives of the principal and agents are less likely with a competitive market and free movement of the affiliates
among pension funds.
zThe same frontier can be derived by maximizing expected returns subject to a volatility constraint.
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circumstances, these strategies are also equivalent to a
VaR approach, in which the investment manager chooses
a portfolio that maximizes expected returns subject to the
constraint that the probability of a loss beyond a given
amount is set at a fixed level. For this equivalence to hold,
the distribution of returns should be elliptical, which
generally implies symmetry.y

These equivalences are derived in order to discern the
likely effects of imposing certain constraints on the choice
of portfolios. This case is particularly relevant when
considering pension funds which are subject to stringent
regulations in terms of exposure to risk for the affiliates.
This section also shows that, under certain conditions,
VaR limits would amount to imposing a bound on
volatility. Furthermore, with quadratic preferences or an
elliptical distribution of returns, portfolios would pertain
to the mean–variance frontier. Finally, this section
discusses the effects of imposing quantitative limits
instead of VaR limits.

3.1. Quadratic preferences and the mean–variance
frontier

Following Campbell et al. (1997), let there be n risky
assets with mean vector m and covariance matrix V.
Define wa as the n-vector of portfolio weights for an
arbitrary portfolio a with weights summing to unity. The
mean return and variance of this portfolio are denoted by
�a ¼ w0am and �2a ¼ w 0aVwa, respectively.

Definition 3.1: Portfolio p is the minimum-variance
portfolio of all portfolios with mean return �p if its
portfolio weight vector is the solution to the constrained
optimization problem:

min
w

1

2
w 0Vw

� �
, ð1Þ

subject to

w 0{ ¼ 1, ð2Þ

w 0m ¼ �p: ð3Þ

The first-order conditions with respect to the weights
(w) are

Vwp � �1{� �2m ¼ 0, ð4Þ

where i is an n-vector of ones, and �1 and �2 are the
Lagrange multipliers of equations (2) and (3),
respectively.

Combining equations (2), (3), and (4), we obtain the
solution

wp ¼ GþH�p, ð5Þ

where G and H are n-vectors,

G ¼
1

D
½BV�1{� AV�1m�,

H ¼
1

D
½CV�1m� AV�1{�,

and A¼ i0V�1m, B¼m0V�1m, C¼ i0V�1i, and
D¼BC�A2.z

The expected return is, by definition, w 0pm ¼ �p, and its

volatility is

�2p ¼ w 0pVwp ¼
1

D
½C�2

p � 2A�p þ B�: ð6Þ

The portfolio that attains the minimum variance subject

to constraint (2) but not (3) is the portfolio i with
�i¼A/C and �2i ¼ 1=C.x The mean–variance frontier is

the part of the curve of figure 1 where the expected return
satisfies �p��i.

If risk is volatility, the minimum-variance portfolio

problem is closely related to the optimization problem in

which an agent maximizes expected utility with quadratic
preferences (Huang and Litzenberger 1988, LeRoy and

Werner 2001).

Definition 3.2: Portfolio q is the optimal portfolio with

quadratic preferences if its portfolio weight vector is the
solution to the following constrained optimization:

max
w

w 0m�
1

2
�w 0Vw

� �
, ð7Þ

subject to equation (2).

The parameter �40 defines the degree of risk aversion,

with higher values indicating higher aversion. The solu-
tion to this problem is

wq ¼
1

�
V�1ðmþ E{Þ, ð8Þ

where

E ¼
� � A

C
:

Proposition 3.3: Portfolio q belongs to the mean–variance
frontier.

Proof: Define �q¼m0 wq and let � be

� ¼
D

�qC� A
: ð9Þ

Then equation (8) can be expressed as

wq ¼ GþH�q,

which belongs to the mean–variance frontier. œ

yA multivariate elliptical distribution is fully characterized by its mean, covariance matrix, and characteristic generator. A linear
combination of an elliptically distributed vector is also elliptical. Elliptical distributions are symmetric and unimodal, but they are
not constrained in terms of kurtosis. Examples of elliptic distributions are the normal, Student’s t, logistic, and Laplace
distributions.
zThe optimal portfolio (5) admits short sales (some of the weights may be negative). Short sales can be seen as proxies for the use of
derivates by the portfolio manager.
xThis portfolio is denoted by i in figure 1.
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Note that, if �q is set equal to A/C (the minimum

variance portfolio i), then � diverges, in which case the

problem is not well defined. Thus, �q4A/C must hold,

which implies that portfolio i is not portfolio q.
Next we consider the impact of imposing other

constraints on an agent that has quadratic preferences.

Studying how portfolio selection changes when the

manager faces other constraints is important since regu-

lators may want to impose them as a response to potential

agency problems.
The most natural constraint would be an upper limit on

the volatility of the portfolio. This constraint is equivalent

to imposing an upper limit on the expected return.

For expositional purposes, this equivalence starts by

deriving this last portfolio.

Definition 3.4: Portfolio r is the optimal mean restricted

portfolio with quadratic preferences if its portfolio weight

vector is the solution to the following constrained

optimization:

max
w

w 0m�
1

2
�w 0Vw

� �
,

subject to equation (2) and

w 0m � �: ð10Þ

Proposition 3.5: If �4A/C, portfolio r belongs to the

mean–variance frontier.

Proof: Using equation (9), note that if

�4
Dþ �A

�C
,

constraint (10) is not binding and wr¼wq. When this

condition is violated, �q4�. In that case, wr¼wp for

�p¼�. œ

Definition 3.6: Portfolio s is the optimal variance

restricted portfolio with quadratic preferences if its port-

folio weight vector is the solution to the following

constrained optimization:

max
w

w 0m�
1

2
�w 0Vw

� �
,

subject to equation (2) and

w 0Vw � �2: ð11Þ

Proposition 3.7: If �241/C, portfolio s belongs to the

mean–variance frontier.

Proof: Using equation (6), note that

� ¼
Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðC�2 � 1Þ

p
C

is the expected return consistent with �2 in the mean–
variance frontier. The proof follows from
proposition 3.5. œ

The above propositions make clear that, within this
framework, imposing a constraint that precludes the
volatility of a portfolio from exceeding a threshold is
equivalent to imposing a constraint on its expected return
not to exceed a threshold. Figure 1 shows that these
constraints imply that, with quadratic preferences, the
chosen portfolio would be either a portfolio on the mean–
variance frontier in the constrained area (when the
constraint is not binding) or it would be portfolio r
(when the constraint is binding).

3.2. Value-at-risk and the mean–variance frontier

Value-at-Risk (VaR) has become a popular tool for risk
management of financial institutions (see Dowd (1998)
and Basak and Shapiro (2001), and references therein).

Following Gourieroux et al. (2000), let l(w) be the
observed return of portfolio w. As the returns are
random, so is l(�). Given the cumulative distribution of
l(�), define the Value-at-Risk [VaR(w, �)] of portfolio w
for a probability � as the value that produces

Pr½l ðwÞ � VaRðw,�Þ� ¼ �:

That is, the probability of obtaining a return of VaR(w, �)
or lower is � %.y

If the returns follow an elliptic distribution with mean
m and covariance matrix V, then

VaRðw,�Þ ¼ w 0mt þ k�ðw
0VtwÞ

1=2,

with k� being the quantile of level � of the distribution.z
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Figure 1. Mean–variance frontier. An i denotes the minimum
variance portfolio. Portfolio r is chosen when a maximum
expected return, maximum variance, or a VaR constraint is
binding.

yOften, l(�) is defined as a loss (instead of a return), and VaR(w, �) should be viewed accordingly.
zThis holds if the returns follow a multivariate normal distribution k�¼ z�¼�z1��, where z�¼��1(�), with ��1(�) denoting the
inverse of the cdf of a standard normal distribution. For example, if �¼ 0.025 and the returns are normal, k�¼� 1.96. If the returns
follow a multivariate Student’s t distribution with v42 degrees of freedom, k�¼ z�(v) [(v� 2)/v]1/2. In general, if the returns follow
an elliptical distribution, the VaR will be a linear function of the mean and standard deviation of the portfolio. De Giorgi (2002)
presents other results derived from imposing normality.

1318 Feature



Definition 3.8: Portfolio v is the minimum VaR portfolio

for a level � if its portfolio weight vector is the solution to

the following constrained optimization:

max
w
½w 0mt þ k�ðw

0VtwÞ
1=2
�, ð12Þ

subject to equation (2).

Proposition 3.9: If �51/2 and k�5 �
ffiffiffiffiffiffiffiffiffiffi
D=C
p

, portfolio v

belongs to the mean–variance frontier.

Proof: Alexander and Baptista (2002, proposition 1)

show that, if k�5 �
ffiffiffiffiffiffiffiffiffiffi
D=C
p

, portfolio v exists and takes

the following form:

wv ¼ GþH�v,

where:

�v ¼
A

C
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

C

ðk�Þ
2

Cðk�Þ
2
�D
�

1

C

� �s
,

which is in the mean–variance frontier. œ

As was the case with the q portfolio, the minimum

variance portfolio (i) is not VaR efficient given that�v4A/

Cmust hold. Thus, if the distribution of the returns allows

for the VaR function to be expressed as in equation (12),

the v portfolio can be expressed as a q portfolio by setting

� ¼
1

D

Cðk�Þ
2

Cðk�Þ
2
�D
� 1

� �� ��1=2
: ð13Þ

Thus, under elliptically distributed returns, VaR portfolio

optimization can be directly mapped into a standard

optimization problem with quadratic preferences.

Furthermore, equation (13) shows that the risk-aversion

coefficient can be expressed as a function of the tail

quantile (as � is increasing in j k�j).
If VaR minimization is subject to the maximum

volatility constraint (11), the resulting portfolio can be

described as a v portfolio resulting from an optimization
with quadratic preferences and the same volatility con-
straint. If an additional VaR constraint of the form

w 0mt þ k�ðw
0VtwÞ

1=2
� VaR ð14Þ

is considered, the resulting portfolio also belongs to the
mean–variance frontier.

If this constraint is not binding, portfolio v is selected.
If it is binding, there is a k such that

w 0mt þ kðw 0VtwÞ
1=2
¼ VaR:

If k5 �
ffiffiffiffiffiffiffiffiffiffi
D=C
p

, the constrained portfolio will still be in
the mean–variance frontier and would be equivalent to a r
or v portfolio, with a stricter volatility constraint that
would be to the left of the constraint depicted in figure 1.

3.3. VaR and quantitative limits

Defined contributions pension systems are subject to
stringent regulations that intend to limit risk. The most
common regulation imposes quantitative restrictions on
the portfolios that can be chosen. This is equivalent to
imposing a constraint of the form

w � �, ð15Þ

where � is the n vector of constraints that must be
satisfied.

Berstein and Chumacero (2006) demonstrate that
quantitative limits are costly and inefficient mechanisms
to limit the volatility of returns, given that quantitative
restrictions imply a mean–variance frontier that is dom-
inated by the mean–variance frontier without limits.

Figure 2 illustrates this point by constructing the
mean–variance frontier of monthly returns using
Chilean data. The continuous line corresponds to the
frontier with no limits, and the line forbids investing in
foreign or domestic variable-income instruments. The
distance between the lines depends on the stringency of
the limits. The minimum variance portfolio of the
restricted problem is to the right of the unrestricted one.
Furthermore, the distance between the lines shortens at a
given location depending on the specific limits imposed.

Quantitative limits do not allow for proper diversifica-
tion because limits lead to inefficient portfolios, regardless
of the risk aversion of the agents. That is, less volatility
could be achieved with the same expected return in the
absence of limits. Equivalently, more expected returns
could be obtained with the same volatility if no limits
were imposed. For instance, more stringent limits imply a
lower risk allowance, at the expense of higher efficiency
costs with respect to explicit volatility bounds.

In summary, a VaR limit would achieve a better
risk–return combination than quantitative restrictions if
the selected portfolio is on the efficient frontier. As shown
above, this is precisely the case with elliptically distributed
returns.y Under this assumption, VaR portfolio
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Figure 2. Mean–variance frontier and quantitative limits. The
continuous line corresponds to the unconstrained mean–variance
frontier. The dashed line corresponds to the mean–variance
frontier with quantitative limits that prohibit investing in
domestic variable income instruments and overseas investments.

yAs pointed out by a referee, pension funds (and affiliates) may have preferences that are not quadratic even when the VaR limits
are on the mean–variance frontier. In that case, limits would not guarantee that the portfolio chosen by the agent is on the mean–
variance frontier.
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optimization or VaR limits are equivalent to maximum
return or maximum volatility limits. This portfolio
optimization is, in turn, equivalent to one obtained with
a quadratic objective function subject to the constraints
imposed by the limits. The resulting portfolio will be on
the mean–variance frontier. However, a stringent VaR
limit may lead to a suboptimal allocation of resources for
agents that are less risk averse than the implied bound.

If both restrictions are imposed at the same time, the
selected portfolio would be on the right side of the
restricted frontier, which implies an additional efficiency
cost. Overall benefits and costs would have to be
assessed when imposing this type of regulation.
The next section highlights some important drawbacks
of VaR regulation.

4. Challenges for VaR-based supervision

The equivalences derived in the previous section rely on
imposing some assumptions on the preferences or the
distribution of returns. Under such conditions, VaR limits
can be viewed as equivalent to maximum return or
maximum volatility limits. Furthermore, the portfolio
chosen would be on the efficient frontier.

Although many regulatory agencies are considering
VaR limits to curb risk for affiliates of defined contribu-
tion pension fund systems, the vast majority of them
impose quantitative limits. As discussed, such limits are
not efficient, as they are dominated by the frontier of
VaR-based limits. Under a defined contribution system,
the longevity and investment risks are assumed by the
affiliate (principal), whose pensions depend on the
investment strategy of the portfolio manager (agent).

Next, we discuss three important aspects that regula-
tors ought to consider prior to imposing VaR or
quantitative limits on this system. To illustrate some of
the points, we use Chilean data.

. Ellipticity: As shown earlier, if the objective
function is quadratic or if the distribution of
returns is elliptic, then the portfolios chosen are
on the mean–variance frontier. In those cases, a
VaR limit will also be on the frontier (as long as
the constraint is not too restrictive).

Furthermore, with elliptically distributed

returns, the conditional VaR is equivalent to

the VaR (Rockafellar and Uryasev 2000).

If returns do not have a symmetric distribution,

the mean–variance frontier may not be opti-

mal (as long as preferences are not quadratic).

Table 1 shows tests for skewness, excess kurto-

sis, and normality using Chilean and U.S.

instruments. For the case of Chilean assets,

normality is strongly rejected both for the
individual series and for the bivariate distribu-

tion. The same is (marginally) true for the U.S.

series, although symmetry is not rejected in the

case of the U.S. fixed income instrument.y

As discussed, ellipticity does not preclude excess

kurtosis, which is characteristic of financial

time series. However, in the absence of symme-

try, VaR portfolios are not on the mean–

variance frontier. If agents take this character-

istic into account, VaR may not be the best risk

measure. In the absence of quadratic prefer-

ences or symmetrically distributed returns,

agents may prefer to follow a different portfolio

strategy than the one implied by the

efficient frontier, so VaR limits may not guar-

antee efficiency (in the sense of aligning port-

folio selection, regulation, and preferences).

Quantitative limits would still be suboptimal,
but they may prevent the realization of

extreme downturns at the expense of

being generally inefficient with respect to VaR

limits.
. Dependence: In practice, the VaR of a portfolio

is computed using realized time series of returns

expressed in the same (real) currency and term,

and it assumes that the returns are independent.

Efficiency would imply that this is not a bad

assumption. With monthly data, however, past

returns help to forecast present returns. In that

case, quantile estimates should consider this

property. The same can be said with respect to

second moments. ARCH/GARCH features are

typical of financial returns. This implies that if

VaR limits are intended to limit volatility, they

should be consistently estimated using time

Table 1. P-Values of ellipticity tests.

FCh VCh FUS VUS Chile US All

Skewness 0.00 0.01 0.77 0.00 0.00 0.11 0.00
Kurtosis 0.00 0.21 0.00 0.00 0.00 0.10 0.00
Jarque–Bera 0.00 0.01 0.00 0.00 0.00 0.06 0.00

FCh, fixed income (Chile); VCh, variable income (Chile); FUS, fixed income (United States); VUS, variable income (United States); Chile, joint test

for fixed- and variable-income instruments in Chile; US, joint test for fixed- and variable-income instruments in the United States; All, joint test for

fixed- and variable-income instruments in Chile and the United States.

yFigure 3 presents additional evidence of the strong departures from normality of the series by comparing their empirical quantiles
with the theoretical quantiles of the normal distribution. When normality is present, the dots should lie on straight lines. The pattern
of deviation from linearity provides an indication of the nature of the mismatch.
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series models. The statistical properties of the

data are not properly taken into account with

VaR measures if dependence is present. Because

financial returns tend to present volatility

clustering (calm and volatile periods tend to

display persistence), the frequency and length of

the observations used to compute the VaR

measure may imply overly restrictive limits in

highly volatile periods and relatively loose

limits in calm periods. Given that pension

funds in defined contribution systems invest

for the long run, periods of high (low) short-

term volatility should not have a first-order

impact on the investment strategies of pension

fund managers. Moreover, in a period of

extreme volatility, such as the recent global

crisis, rebalancing the portfolio to comply with

a VaR limit could imply a significant movement

in terms of buying and selling instruments. This

might not be possible in a small country with

low liquidity in the capital market, because of

the impact on market prices and the stability of

the financial sector.
. Term: Pension fund affiliates invest for their

retirement and do not use the funds invested in

the process. Guidolin and Timmermann (2006)

demonstrate that the VaR term structure varies

according to the distribution of the returns.

For example, assume that the returns follow a

multivariate normal distribution with mean

vector m and covariance matrix V.y In this

case, no additional information regarding the

distribution of the returns can be gathered with

past data. If an agent decides to maintain the

same portfolio for h periods, the mean and

covariance matrix of the returns will be hm and

hV, respectively.z In the quadratic preferences

setup, the portfolio chosen would be the same

regardless of the time horizon. This is so

because the utility function is scaled by the

factor h and the first-order conditions do not

depend on h. Thus, without changes in attitudes
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Figure 3. Theoretical (normal) and empirical quantiles for returns on instruments.

yIn practice, time dependence may be present in second moments and even in first moments. Furthermore, this example assumes
that there is no risk-free asset for the investing horizon and that fixed-income instruments have a one-period maturity.
zIn a more general framework, the investor should use the available information to compute the h-periods-ahead forecasts of the
vector of expected returns and covariance matrix.
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toward risk (� ) and under these restrictive
assumptions, quadratic preferences imply that
the portfolio that is optimal for a one-period
horizon is also optimal for any horizon.y The
VaR of this portfolio becomes

VaRðw,�, hÞ ¼ hw 0mþ k�
ffiffiffi
h
p
ðw 0VwÞ1=2

¼ h�þ �k�
ffiffiffi
h
p
:

ð16Þ

Since the objective function is not proportional to h, the
optimal portfolio will depend on h. Consider a portfolio
with expected return � and volatility �2 . Differentiating
equation (16) with respect to h, the horizon h� where VaR
attains a minimum is

h� ¼
�2ðk�Þ

2

4�2
: ð17Þ

For example, if the returns are normally distributed and
�¼ 0.025, the value of h at which equation (16) attains a
minimum is approximately equal to the square of the
coefficient of variation of the portfolio. If the pair (�, �2)
is the tuple of expected return and volatility that would be
optimally chosen for h¼ 1, then equation (17) shows that
the same portfolio cannot be optimal for h41 because
equation (16) will be increasing in h for h4h�. This
implies that, for h41, the first moment will tend to
dominate the second. Thus, an investor maximizing
equation (16) for h41 will choose more aggressive
strategies (in line with the popular perception that the
equity premium justifies more aggressive strategies for
long-term investors). Figure 4 shows the importance of
considering the investment horizon. The longer the
investment horizon, the more aggressive the optimal v
portfolio will be. The equivalence between the v and q
portfolios can be maintained by changing the value of � in
the objective function (7). As the second panel of the

figure stresses, the risk-aversion parameter � should

decrease with increases in h for the VaR objective
function to be maximized. An implication of this result

is that VaR measures obtained from high-frequency data
for a relatively short span of time (say one or two years)

when investors have different planning horizons may be
dangerous. For long-term investment horizons, it is

necessary to have consistent estimators of at least the
unconditional first two moments of the distribution of

returns. For this to happen, the distribution has to be
ergodic for these moments and the sample used must

cover a representative realization of ‘all states’ of nature.

Additionally, as agents have different planning horizons,

a universal VaR limit may be undesirable for some agents

(particularly long-term investors) since the second-order

considerations are not as important for them. Multifunds

(in which agents choose from different portfolio strategies

depending on the characteristics of the affiliates), with

properly set varying VaR limits, may be an attractive

alternative. However, there is a final consideration

when setting this type of limit for pension funds. The

regulator may be interested in maximizing the pension

attained with the accumulated resources. This embodies

an annuitization risk at the moment of retirement.

A person who is retiring usually buys an annuity.

The price of the annuity at the moment of retirement

depends on interest rates at that time, among others

factors. Therefore, the lower (higher) interest rates are at

the moment of retirement, the higher (lower) the price of a

unit of pension would be, and a given amount of

accumulated funds would buy a lower (higher) pension.

This is the same as saying that even when close to

retirement, a person’s investment horizon is still signifi-

cantly long. This should be taken into account when

setting restrictions on volatility.

yThe standard deviation of a portfolio held for h periods would follow the square-root rule (as the standard deviation of that
portfolio would be

ffiffiffi
h
p

times the standard deviation of the portfolio held for one period).
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Figure 4. VaR and term structure. The left panel shows the combinations of (monthly) expected returns and volatility resulting
from maximizing the VaR objective function for �¼ 0.025 and h¼ 1, . . . , 12. The dot corresponds to the optimal portfolio for h¼ 1
that is consistent with quadratic preferences. The right panel shows the changes in � that would be needed for the quadratic
preferences portfolio to match the VaR portfolio when h changes.
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A simple way to exemplify the issues discussed above is
as follows. Assume that the principal (affiliate) and the
agent (pension fund administrator) differ on their degree
of risk aversion. In particular, assume that the agent (F) is
less risk averse than the principal (P):

�P 4 �F: ð18Þ

As the objective functions of F and P are not aligned, the
maximization of equation (7) subject to equation (2)
performed by each agent would lead them to different
optimal portfolios. Using equations (6), (9), and (18)
we have

�P ¼
Dþ �PA

�PC
5

Dþ �FA

�FC
¼ �F,

�2P 5 �2F:

In this case, the unconstrained optimization performed by
the agent would lead to a riskier portfolio than the
principal would have chosen (portfolios F and P of
figure 2).

In principle, a regulator who knows the preferences of
the principal and the first and second moments of the
returns could solve the principal–agent discrepancy by
imposing a maximum volatility constraint at �2 ¼ �2P.
From propositions 3.5 and 3.7, we know that even if the
agent is less risk averse than the principal, this con-
strained optimization would lead to portfolio P of
figure 2. A VaR constraint of the form (14) would lead
to the same result.

If the regulator is interested in limiting the volatility of
the portfolio chosen by the agent but decides to use
quantitative limits to do so, the agent now faces a
constraint like equation (15). In that case, the resulting
mean–variance frontier would be to the right of the
unconstrained frontier (the dashed frontier of figure 2).

For the agent to choose a portfolio consistent with
�2 ¼ �2P, the regulator now needs to know not only the
preferences of the principal and the first and second
moments of the returns, but also the preferences of the
agent. This is so because the regulator now needs to set
the quantitative limits � of the constraints in equation (14)
that would lead the agent to choose a portfolio like R
in figure 2.

The imposition of these limits is inefficient since the
same volatility bound could have been attained without
sacrificing expected returns (compare portfolios P and R
in figure 2). Furthermore, in order to lead the agent to
choose portfolio R, the regulator requires more informa-
tion than is needed to attain portfolio P.

5. Concluding remarks

This paper presents a framework for analysing some of
the implications of VaR-based regulation.

Under certain conditions, VaR limits can be seen as
maximum expected return or maximum volatility con-
straints. In these cases, VaR portfolio strategies and VaR

limits produce portfolios that are on the mean–variance
frontier. The conditions under which these results hold
are very restrictive and should be tested.

In terms of implementing VaR-based regulation for the
case of pension funds, more effort should be made in
evaluating the potential discrepancies between the prin-
cipal (affiliate) and the agent (fund manager). This is
crucial because one of the main reasons for setting VaR
limits is that the agent is supposed to be less risk averse
than the principal. In such cases, VaR limits in line with
the preferences of the principal might be desirable.
Because risk aversion varies across systematic character-
istics of the principal or planning horizons, a unique VaR
limit is undesirable.

VaR limits may seriously affect pensions in the long
run, because they not only restrict volatility, but also
expected returns. Moreover, volatility or VaR limits
might not be a good measure of the relevant risk faced
by the future pensioner if the annuitization risk is ignored.
Annuitization risk can be incorporated by expressing
rates of return and volatilities in terms of pension units,
although this may be difficult to do in practice.

From a practical standpoint, regulators should try to
obtain precise estimators of the moments of asset returns,
given that the availability of this information is crucial for
setting an adequate VaR limit. VaR computations using
high-frequency data for a short period may not be
relevant risk measures for most agents (considering their
planning horizons). Moreover, compliance with this type
of limit could have first-order impacts on the financial
stability of countries with small capital markets in periods
of high volatility.

If VaR limits are properly set, quantitative limits might
be loosened. They preclude agents from diversifying their
portfolios and lead to suboptimal mean–variance combi-
nations. As is the case with any regulation, costs and
benefits should be assessed and restrictions relaxed when
possible.
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